
ASEN5317 - Computational Fluid Dynamics
Instructor: Professor L. Kantha

Homework #6:
Numerical Diffusion and Dispersion: Solution of the 1-D

Linear Advection Equation

by

 Joseph P. Kubitschek
27 November 1998

ABSTRACT
Various numerical schemes were used to solve the linear advection (i.e. 1-D wave) equation as a
means for improved understanding of numerical diffusion and dispersion inherent to many
numerical schemes. The linear advection equation, subject to an initial sinusoidal disturbance,
was solved over a 2.0-m spatial domain using the first order Upwind scheme; the second order
MacCormack scheme; the second order Lax-Wendroff scheme; and the second order Lax-
Wendroff scheme with diffusion/anti-diffusion. Comparison of the results indicates that the
Upwind scheme is too diffusive. Conversely, both the MacCormack and Lax-Wendroff schemes
are too dispersive. However, in the case of the Lax-Wendroff scheme, the inherent dispersion
was eliminated using the appropriate diffusion/anti-diffusion producing improved results as
compared with all other cases investigated.

INTRODUCTION

Background
The linear advection equation is a hyperbolic partial differential equation with a steady
propagating solution and is written as,

∂u/∂t + a(∂u/∂x) = 0 or ∂E/∂t + ∂F/∂x = 0 (flux conservative form with E = u and F = au).

Physically, this equation governs the linear transport of some parameter u where the solution
represents wave propagation without changes in shape (i.e. inviscid fluid). For the purposes of
this investigation u is taken as the velocity of some initial disturbance that propagates across a
pre-specified domain. In this case, a is taken as 200 m/s and the initial disturbance is defined as

u = Usin(2πx) for 0 ≤ x ≤ 1.0m,
u = 0.0 for 1.0m ≤ x ≤ 2.0m.

Where U=10.0 m/s, and x represents the 2.0-m spatial domain across which the disturbance
propagates. Such an equation as this lends nicely to the use of finite difference techniques to
obtain a time-marching solution in the spatial domain.

Solution Techniques
Upwind Scheme
The Upwind finite difference scheme for the linear advection equation is first order accurate and
may be written as

uj
n+1 = (1 - C)uj

n + Cuj-1
n.

Where C = a∆t/∆x and represents the Courant number. Examination of stability indicates this
scheme to be conditionally stable. That is the solution is stable provided C ≤ 1 (Courant-
Friedrichs-Lewy or CFL condition). However, such a condition introduces first order truncation
error in both space and time and hence inherently introduces what may be considered as
numerical or artificial diffusion that influences the accuracy of the scheme.

MacCormack Scheme
The MacCormack method is a second order accurate predictor-corrector finite difference scheme
that may be written as

uj-1
n+1 = uj

n – ½C[(1 - C)uj+1
n + 2Cuj

n - (1 + C)uj-1
n].

Again, a stability analysis indicates the scheme to be stable provided C ≤ 1. Intuitively, the
accuracy of this scheme is expected to be much improved over the first order Upwind scheme.
However, as will be discussed, such is not entirely the case as numerical dispersion is introduced
due leading order of the truncation error.

Lax-Wendroff Scheme
The Lax-Wendroff scheme, also a second order scheme, is an example of a two-step scheme and
may be written as

uj-1
n+1 = uj

n – C[½ (uj+1
n + uj

n) – ½C(uj+1
n - uj

n) – ½C(uj
n + uj-1

n) + ½C(uj
n - uj-1

n)].

Again a stability analysis produces the CFL condition making the solution numerically stable
provided C ≤ 1. However, this scheme is also excessively dispersive due to leading order
truncation error.

Lax-Wendroff Scheme with diffusion/anti-diffusion
Although the Lax-Wendroff scheme is too dispersive, improved results may be obtained by first
introducing diffusion to damp the inherent dispersion and then adding anti-diffusion to recover
the desired linear advection equation solution. This two-step method may be written as

uj
* = uj

n – ½C(uj+1
n - uj-1

n) + (ε1 + ½C2)(uj+1
n - 2uj

n + uj-1
n),

uj
n+1 = uj

* – ε2(uj+1
* - 2uj

* - uj-1
*).

Where, ε1 = (1 - 2C2)/6, ε2 = (1 + C2)/6, and uj* represents the damped solution as the diffusion
term is added in the first step and the anti-diffusion term in the second step to recover the desired
solution, uj

n+1 (“ASEN5317 - Lecture Notes,” Kantha5).

RESULTS AND DISCUSSION
The results of each numerical scheme investigated are presented as figure 1-6, appendix A. Each
figure represents the solution or disturbance propagation as obtained using each numerical
scheme respectively. The solutions computed at 6 successive time steps are plotted over the
spatial domain and provide an indication of disturbance propagation characteristics in the x-
direction until it reaches the end of the domain in question (i.e. 2.0 m in this case). Initially, there
was some question as to how best to ascertain when the disturbance had propagated to the upper
eastern end of the spatial domain (i.e. the termination criteria for each of the routines). At first
this was taken to be the departure of the eastern boundary, at x = 2.0m, from zero. However, the
result was premature termination of the time marching. To correct this the termination criteria
was set to uj+1

n+1 = - uj-1
n+1 by noting that the wave form may be considered as extending beyond

the eastern end of the spatial domain by a single spatial grid point. This condition was also
required as a necessary boundary condition for both the MacCormack and Lax-Wendroff schemes
as they are second order and centered in space.

Upwind Scheme
Figure 1 represents the solution to the linear advection equation using the first order upwind
scheme with a Courant number, C=0.8. As can be seen, this scheme introduces artificial viscosity
or numerical diffusion, a direct result of leading order truncation error term. This numerical
diffusion is evidenced as the broadening of the wavelength and the corresponding reduction in
amplitude of the disturbance. Although the dispersion is subtle, marching further in time for a
larger spatial domain would provide an enhanced perspective of this feature. Never the less, it is
present and entirely an artifact of the numerical scheme (i.e. it is independent of the physics).

MacCormack Scheme
In contrast to the Upwind scheme, the MacCormack scheme exhibits solution characteristics that
are too dispersive. Again this artificial feature is attributed to leading third order truncation error
term. And, because this is a second order scheme the leading third order error term causes the
dispersion evident in the small oscillations illustrated by figure 2.

Lax-Wendroff Scheme
Similar the MacCormack scheme, the Lax-Wendroff scheme is also too dispersive. The results
exhibited by figure 3 show the dispersion manifest as small-scale oscillations in the successive
time-step solutions.

Lax-Wendroff Scheme with anti-diffusion
The problem of dispersion may be handled using the diffusion/anti-diffusion method as
previously discussed. In this case, adding artificial diffusion acts to offset the excessive
dispersion inherent to the scheme. This is achieved by means of a two step algorithm in which
the first step adds diffusion to obtain a damped solution and the second step applies anti-diffusion
to recover the desired solution. The effect is much improved results. However, it should be
noted that adding diffusion impacts both the accuracy and stability of the numerical scheme.
Although artificial diffusion reduces accuracy it has the benefit of improving numerical stability.
As such three different magnitudes of diffusion were added as a means of obtaining the optimal
diffusion by trial ad error. Figure 4 represents the initial diffusion addition investigated as
previously defined. However, this magnitude is apparently excessive, as the solution is observed
to behave similar to that of the Upwind scheme solution (i.e. too diffusive). To correct this, the
diffusion term was decreased by a factor of 2. Figure 5 represents this case and illustrates
improved results without the previously seen excessive diffusion inherent in the Upwind scheme.
To test this, the original magnitude of diffusion was again decreased, this time by a factor of 10.
The result was excessive dispersion similar to that for the scheme without diffusion/anti-
diffusion, as expected. Figure 6 illustrates these results and on comparison appears very much
similar to the original Lax-Wendroff solution as insufficient diffusion was added. Therefore, the
results presented as figure 5 represent somewhat of a happy medium between excessive diffusion
exhibited by the Upwind scheme and excessive dispersion exhibited by both the MacCormack
and Lax-Wendroff schemes and hence diffusion/anti-diffusion algorithm is undoubtedly the
desired method for solution of the linear advection equation.

CONCLUSIONS

• Based on these results, the Upwind scheme exhibits excessive diffusion, an artifact of the
second or leading truncation error term. In contrast, both the MacCormack and the Lax-
Wendroff schemes exhibit excessive dispersion as a result of the leading, third order
truncation error term.

• In the case of the excessive dispersion exhibited by the Lax-Wendroff scheme, improved
results may be obtained by successively adding diffusion to the numerical scheme and then
adding anti-diffusion to recover the desired solution (i.e. the solution for the linear advection
equation).

• The magnitude of diffusion applied to improve the results of the Lax-Wendroff scheme must
be appropriate for the problem at hand and the value of the Courant number. Adding
diffusion for a particular value of C has the benefit of improving numerical stability but this
is at the price of degraded accuracy as adding excessive diffusion creates the original problem
inherent to the Upwind scheme. Therefore, trial and error is likely required to obtain a sound
solution that exhibits good accuracy (i.e. without excessive diffusion) without adverse
dispersion.

REFERENCES

1. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in
Fortran 77, 2nd Edition, Volume 1, Cambridge University Press, 1992.

2. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in
Fortran 77 – Examples Book, Cambridge University Press, 1992.

3. Peyret, R., and Taylor, T.D., Computational Methods for Fluid Flow, Springer-Verlag, 1983.

4. Anderson, J.D., Computational Fluid Dynamics, McGraw-Hill, Inc., 1995.

5. Kantha, L., “ASEN5317 - Lecture Notes,” University of Colorado at Boulder, Fall 1998.

APPENDIX A – FIGURES

Figure 1. - Results of first order diffusive upwind scheme. Plot of disturbance propagation at
various time steps across the domain, 0-2.0 m for Courant number, C = 0.8.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-11

-9

-7

-5

-3

-1

1

3

5

7

9

11

Domain (m)

D
is

tu
rb

an
ce

 A
m

pl
itu

de
 (m

/s
)

t = 0.0 sec.

t = 0.0008 sec.

t = 0.0016 sec.

t = 0.0024 sec.

t = 0.0032 sec.

t = 0.0040 sec.

t = 0.0048 sec.

Linear Advection Equation Solution
Upwind Scheme (C = 0.8)

Figure 2. - Results of second order dispersive MacCormack scheme. Plot of disturbance
propagation at various time steps across the domain, 0-2.0 m for Courant number, C = 0.8.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-11

-9

-7

-5

-3

-1

1

3

5

7

9

11

Domain (m)

D
is

tu
rb

an
ce

 A
m

pl
itu

de
 (m

/s
)

t = 0.0 sec.

t = 0.0008 sec.

t = 0.0016 sec.

t = 0.0024 sec.

t = 0.0032 sec.

t = 0.0040 sec.

t = 0.0048 sec.

Linear Advection Equation Solution
MacCormack Scheme (C = 0.8)

Figure 3. - Results of second order dispersive Lax-Wendroff scheme. Plot of disturbance
propagation at various time steps across the domain, 0-2.0 m for Courant number, C = 0.8.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-11

-9

-7

-5

-3

-1

1

3

5

7

9

11

Domain (m)

D
is

tu
rb

an
ce

 A
m

pl
itu

de
 (m

/s
)

t = 0.0 sec.

t = 0.0008 sec.

t = 0.0016 sec.

t = 0.0024 sec.

t = 0.0032 sec.

t = 0.0040 sec.

t = 0.0048 sec.

Linear Advection Equation Solution
Lax-Wendroff Scheme (C = 0.8)

Figure 4. - Results of second order dispersive Lax-Wendroff scheme with diffusion/anti-diffusion
applied. Plot of disturbance propagation at various time steps across the domain, 0-2.0 m for
Courant number, C = 0.8.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-11

-9

-7

-5

-3

-1

1

3

5

7

9

11

Domain (m)

D
is

tu
rb

an
ce

 A
m

pl
itu

de
 (m

/s
)

t = 0.0 sec.

t = 0.0008 sec.

t = 0.0016 sec.

t = 0.0024 sec.

t = 0.0032 sec.

t = 0.0040 sec.

t = 0.0048 sec.

Linear Advection Equation Solution
Lax-Wendroff Scheme w/ anti-diffusion (C = 0.8)

Figure 5. - Results of second order dispersive Lax-Wendroff scheme with diffusion/anti-diffusion
applied. Plot of disturbance propagation at various time steps across the domain, 0-2.0 m for
Courant number, C = 0.8. Adding less diffusion reduces the diffusive nature of the solution.
However, some dispersion is beginning to arise.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-11

-9

-7

-5

-3

-1

1

3

5

7

9

11

Domain (m)

D
is

tu
rb

an
ce

 A
m

pl
itu

de
 (m

/s
)

t = 0.0 sec.

t = 0.0008 sec.

t = 0.0016 sec.

t = 0.0024 sec.

t = 0.0032 sec.

t = 0.0040 sec.

t = 0.0048 sec.

Linear Advection Equation Solution
Lax-Wendroff Scheme w/ anti-diffusion (C = 0.8)

Figure 6. - Results of second order dispersive Lax-Wendroff scheme with anti-diffusion applied.
Plot of disturbance propagation at various time steps across the domain, 0-2.0 m for Courant
number, C = 0.8. Further reduction in diffusion addition nearly recovers the original dispersive
nature of the scheme.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-11

-9

-7

-5

-3

-1

1

3

5

7

9

11

Domain (m)

D
is

tu
rb

an
ce

 A
m

pl
itu

de
 (

m
/s

)

t = 0.0 sec.

t = 0.0008 sec.

t = 0.0016 sec.

t = 0.0024 sec.

t = 0.0032 sec.

t = 0.0040 sec.

t = 0.0048 sec.

Linear Advection Equation Solution
Lax-Wendroff Scheme w/ anti-diffusion (C = 0.8)

APPENDIX B – FORTRAN CODE

1.) 1st Order Upwind Scheme: The driver code, hw6a.f implements the Upwind scheme with C = 0.8.

 program hw6a
C
 parameter(nmax=102,pi=3.141592654)
 integer n,m,count
 real uold(nmax),unew(nmax),x(nmax)
 real t,tau,delx,c,u,a
C
 data delx,n,xmax,a,u,c /0.02,101,2.0,200.0,10.0,0.8/
C
 open(unit=1,file='hw6a.out',status='unknown')
 tau=c*delx/a
 m=(n-1)/2
C
 count=0
 t=0.0
 x(1)=0.0
C
 do 2 i=2,n
 x(i)=x(i-1)+delx
2 continue
C
 do 3 i=1,m+1
 uold(i)=u*sin(2.0*pi*x(i))
3 continue
C
 do 4 i=m+2,n
 uold(i)=0.0
4 continue
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(uold(j),j=1,n)
 do while (abs(uold(n-1)).lt.1.25)
 count=count+1
 t=t+tau
 do 5 i=2,n
 unew(i)=(1.0-c)*uold(i)+c*uold(i-1)
5 continue
C
 do 6 i=2,n
 uold(i)=unew(i)
6 continue
C
 write(1,10)t,(uold(j),j=1,n)
 end do
C
10 format(2x,f6.5,5x,101f10.6)
 write(1,'(" Number of time steps for propagation= ",i4)')count
 end

2.) 2nd Order MacCormack Scheme: The driver code, hw6b.f implements the MacCormack scheme with
C = 0.8.

 program hw6b
C
 parameter(nmax=102,pi=3.141592654)
 integer n,m,count
 real uold(nmax),unew(nmax),x(nmax)
 real t,tau,delx,c,u,a
C
 data delx,n,xmax,a,u,c /0.02,101,2.0,200.0,10.0,0.8/
C
 open(unit=1,file='hw6b.out',status='unknown')
 tau=c*delx/a
 m=(n-1)/2
C
 count=0
 t=0.0
 x(1)=0.0
C
 do 2 i=2,n
 x(i)=x(i-1)+delx
2 continue
C
 do 3 i=1,m+1
 uold(i)=u*sin(2.0*pi*x(i))
3 continue
C
 do 4 i=m+2,n
 uold(i)=0.0
4 continue
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(uold(j),j=1,n)
 do while (abs(uold(n-1)).lt.1.25)
 uold(n+1)=uold(n-1)
 count=count+1
 t=t+tau
 do 5 i=2,n
 unew(i)=uold(i)-(c/2)*((1.0-c)*uold(i+1)+2*c*uold(i)-
 $ (1+c)*uold(i-1))
5 continue
C
 do 6 i=2,n
 uold(i)=unew(i)
6 continue
C
 write(1,10)t,(uold(j),j=1,n)
 end do
C
10 format(2x,f6.5,5x,101f10.6)
 write(1,'(" Number of time steps for propagation= ",i4)')count
 end

3.) 2nd Order Lax-Wendroff Scheme: The driver code, hw6c.f implements the Lax-Wendroff scheme
with C = 0.8.

 program hw6c
C
 parameter(nmax=102,pi=3.141592654)
 integer n,m,count
 real uold(nmax),unew(nmax),x(nmax)
 real t,tau,delx,c,u,a
C
 data delx,n,xmax,a,u,c /0.02,101,2.0,200.0,10.0,0.8/
C
 open(unit=1,file='hw6c.out',status='unknown')
 tau=c*delx/a
 m=(n-1)/2
C
 count=0
 t=0.0
 x(1)=0.0
C
 do 2 i=2,n
 x(i)=x(i-1)+delx
2 continue
C
 do 3 i=1,m+1
 uold(i)=u*sin(2.0*pi*x(i))
3 continue
C
 do 4 i=m+2,n
 uold(i)=0.0
4 continue
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(uold(j),j=1,n)
 do while (abs(uold(n-1)).lt.1.25)
 uold(n+1)=uold(n-1)
 count=count+1
 t=t+tau
 do 5 i=2,n
 unew(i)=uold(i)-c*(0.5*(uold(i+1)+uold(i))-(c/2.0)*(uold(i+1)-
 $ uold(i))-0.5*(uold(i)+uold(i-1))+(c/2.0)*(uold(i)-
 $ uold(i-1)))
5 continue
C
 do 6 i=2,n
 uold(i)=unew(i)
6 continue
C
 write(1,10)t,(uold(j),j=1,n)
 end do
C
10 format(2x,f6.5,5x,101f10.6)
 write(1,'(" Number of time steps for propagation= ",i4)')count
 end

4.) 2nd Order Lax-Wendroff Scheme with anti-diffusion: The driver code, hw6d1.f implements the Lax-
Wendroff scheme with diffusion/anti-diffusion for C = 0.8.

 program hw6d1
 parameter(nmax=102,pi=3.141592654)
 integer n,m,count
 real uold(nmax),unew(nmax),udamp(nmax),x(nmax)
 real t,tau,delx,c,u,a,epsa,epsb
 data delx,n,xmax,a,u,c /0.02,101,2.0,200.0,10.0,0.8/
C
 open(unit=1,file='hw6d1.out',status='unknown')
 tau=c*delx/a
 m=(n-1)/2
C Diffusion/anti-diffusion terms.
 epsa=(1.0-2.0*c**2)/6.0
 epsb=(1.0+c**2)/6.0
 count=0
 t=0.0
 x(1)=0.0
C
 do 2 i=2,n
 x(i)=x(i-1)+delx
2 continue
C
 do 3 i=1,m+1
 uold(i)=u*sin(2.0*pi*x(i))
3 continue
C
 do 4 i=m+2,n
 uold(i)=0.0
4 continue
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(uold(j),j=1,n)
 do while (abs(uold(n-1)).lt.1.25)
 count=count+1
 t=t+tau
 uold(n+1)=-uold(n-1)
 do 5 i=2,n
 udamp(i)=uold(i)-(c/2.0)*(uold(i+1)-uold(i-1))+(c**2/2.0)*
 $ (uold(i+1)-2.0*uold(i)+uold(i-1))-
 $ epsa*(uold(i+1)-2.0*uold(i)+uold(i-1))
5 continue
C
 do 6 i=2,n
 unew(i)=udamp(i)+epsb*(udamp(i+1)-2.0*udamp(i)+udamp(i-1))
 uold(i)=udamp(i)
 write(*,*)uold(i)
6 continue
C
 write(1,10)t,(uold(j),j=1,n)
 end do
C
10 format(2x,f6.5,5x,101f10.4)
 write(1,'(" Number of time steps for propagation= ",i4)')count
 end

5.) 2nd Order Lax-Wendroff Scheme with diffusion/anti-diffusion: The driver code, hw6d2.f
implements the Lax-Wendroff scheme with less diffusion/anti-diffusion for C = 0.8.

 program hw6d2
 parameter(nmax=102,pi=3.141592654)
 integer n,m,count
 real uold(nmax),unew(nmax),udamp(nmax),x(nmax)
 real t,tau,delx,c,u,a,epsa,epsb
 data delx,n,xmax,a,u,c /0.02,101,2.0,200.0,10.0,0.8/
C
 open(unit=1,file='hw6d2.out',status='unknown')
 tau=c*delx/a
 m=(n-1)/2
C Diffusion/anti-diffusion terms.
 epsa=(1.0-2.0*c**2)/12.0
 epsb=(1.0+c**2)/12.0
 count=0
 t=0.0
 x(1)=0.0
C
 do 2 i=2,n
 x(i)=x(i-1)+delx
2 continue
C
 do 3 i=1,m+1
 uold(i)=u*sin(2.0*pi*x(i))
3 continue
C
 do 4 i=m+2,n
 uold(i)=0.0
4 continue
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(uold(j),j=1,n)
 do while (abs(uold(n-1)).lt.1.25)
 count=count+1
 t=t+tau
 uold(n+1)=-uold(n-1)
 do 5 i=2,n
 udamp(i)=uold(i)-(c/2.0)*(uold(i+1)-uold(i-1))+(c**2/2.0)*
 $ (uold(i+1)-2.0*uold(i)+uold(i-1))-
 $ epsa*(uold(i+1)-2.0*uold(i)+uold(i-1))
5 continue
C
 do 6 i=2,n
 unew(i)=udamp(i)+epsb*(udamp(i+1)-2.0*udamp(i)+udamp(i-1))
 uold(i)=udamp(i)
 write(*,*)uold(i)
6 continue
C
 write(1,10)t,(uold(j),j=1,n)
 end do
C
10 format(2x,f6.5,5x,101f10.4)
 write(1,'(" Number of time steps for propagation= ",i4)')count
 end

6.) 2nd Order Lax-Wendroff Scheme with diffusion/anti-diffusion: The driver code, hw6d3.f
implements the Lax-Wendroff scheme with even less diffusion/anti-diffusion for C = 0.8.

 program hw6d3
 parameter(nmax=102,pi=3.141592654)
 integer n,m,count
 real uold(nmax),unew(nmax),udamp(nmax),x(nmax)
 real t,tau,delx,c,u,a,epsa,epsb
 data delx,n,xmax,a,u,c /0.02,101,2.0,200.0,10.0,0.8/
C
 open(unit=1,file='hw6d3.out',status='unknown')
 tau=c*delx/a
 m=(n-1)/2
C Diffusion/anti-diffusion terms.
 epsa=(1.0-2.0*c**2)/60.0
 epsb=(1.0+c**2)/60.0
 count=0
 t=0.0
 x(1)=0.0
C
 do 2 i=2,n
 x(i)=x(i-1)+delx
2 continue
C
 do 3 i=1,m+1
 uold(i)=u*sin(2.0*pi*x(i))
3 continue
C
 do 4 i=m+2,n
 uold(i)=0.0
4 continue
C
 write(1,*)'Velocity Results:'
 write(1,10)t,(uold(j),j=1,n)
 do while (abs(uold(n-1)).lt.1.25)
 count=count+1
 t=t+tau
 uold(n+1)=-uold(n-1)
 do 5 i=2,n
 udamp(i)=uold(i)-(c/2.0)*(uold(i+1)-uold(i-1))+(c**2/2.0)*
 $ (uold(i+1)-2.0*uold(i)+uold(i-1))-
 $ epsa*(uold(i+1)-2.0*uold(i)+uold(i-1))
5 continue
C
 do 6 i=2,n
 unew(i)=udamp(i)+epsb*(udamp(i+1)-2.0*udamp(i)+udamp(i-1))
 uold(i)=udamp(i)
 write(*,*)uold(i)
6 continue
C
 write(1,10)t,(uold(j),j=1,n)
 end do
C
10 format(2x,f6.5,5x,101f10.4)
 write(1,'(" Number of time steps for propagation= ",i4)')count
 end

